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A SOFTWARE ARCHITECTURE FOR ADDING NEW INTERACTION
TECHNIQUES TO A COMMAND AND CONTROL BASED TESTBED

1. INTRODUCTION

At the Human-Computer Interaction (HCI) Laboratory at the Naval Research Laboratory
(NRL), we are developing new interaction techniques using input devices to track a user's eye,
head, and positional hand movements as a means for communicating with an interactive computer
system. These techniques open up a new set of possibilities for making user interactions with
computers more natural and efficient. An interaction technique is a way of using physical input
and output devices to perform useful tasks. These are typically low-level physical user tasks, like
selecting or moving an item on the screen. An interaction technique couples a user's actions with
visual and possibly auditory or tactile feedback to allow the user to access, enter, or manipulate
information. Interaction techniques include such media as 3D motion, virtual world interaction,
gesture input, tactile feedback, speech, non-speech audio, and eye movements. Use of these
media in various combinations with each other in a human-computer interface provides multi-
modal interaction techniques for users.

It might seem odd at first to think of using head and eye movements - the same actions that
people use primarily to alter their view of the world - to provide input to control a computer. But
there are ways to exploit and amplify the way people normally use their visual systems. (Examples
are given in Section 2 of this report.) The more natural an interaction between user and computer,
the less learning is required, and the less a user has to remember in order to use the technique.
Minimizing the conscious effort required to perform an application task may allow a usex to
perform that task more quickly and relieve the user of the cognitive load associated with carrying
out artificial steps to achieve a goal. Our philosophy is to use each technique in the most natural
way, and then to combine different techniques to allow a user to perform more complex

operations.

High-bandwidth, multi-modal human-computer interaction techniques are a promising solution
to the Navy's need for higher-performance communication between users and computers,
particularly in military systems in which user response speed is critical. Such interaction
techniques can improve operator-to-computer communication in a command and control system,
making computer use faster and more natural for military decision makers, and enabling a
commander to speed up information gathering and decision making processes during a crisis.

However, these new interaction techniques must be evaluated to see if they actually improve
user performance over existing techniques. Initially, this can be done at a very low level. For
example, in a related 6.1 project (entitled Dialog Interaction Techniques) we are in the process of
measuring how much faster it is to select an object with the eye than with a mouse. There are

many different factors that contribute to the usefulness of an interaction technique; the speed with
which a user can perform tasks with a technique is not the only consideration. Interaction
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techniques can also help a user form a better understanding of a situation or reduce mental
workload in a crisis.

To discover how useful a new technique really is in practice, it needs to be placed within the
context of a meaningful operation. Previous work at the HCI Lab has used low fidelity
applications emphasizing generic user tasks, largely for concept-proving. We now intend to
transition into more realistic Naval-related applications. In particular, we are developing a project
testbed based on Naval command and control systems (C2 systems) as a vehicle for this research
(Hix 1993). The testbed will incorporate new interaction techniques both in isolation and in
combination (i.e., affording multi-modal communication), and will be used for empirical
evaluation of these techniques in human-computer interfaces.

Development, evaluation, and application of high-performance interaction techniques place new
requirements on user interface software architectures and tools, which will require advances in
their technology. Presently, high-performance or non-traditional interaction techniques are
typically built in ad hoc ways, using little or no underlying methodology, and have almost no
development support tools. Current user interface software technology is behind the state-of-the-
art in interface design. User interface management systems, or UIMSs, (discussed in Section 2.3)
for supporting higher-performance interaction do not exist because the basic principles needed for
building such complex systems are not yet known.

We are investigating the software architectures and tools necessary to produce, study, and
apply multi-modal interaction techniques. Our starting point for this work is a specification
technique for developing interactive computer systems based on concurrent state transition
diagrams and its related software, developed at NRL (Jacob 1985, 1986). It will serve as the basis
of the command-and-control-based project testbed that will be used to build prototypes of new
high-performance interaction techniques, and will be extended and modified as needed to support
new interaction techniques and media.

This report describes the software architecture for the project testbed and the design of its
interaction object-based UIMS. It also describes some prototype interaction techniques we have
implemented on this testbed and their software requirements: a natural head control for zooming
and panning a command and control map display, and the use of eye movements for selecting

displayed objects.
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2. SYSTEMS UNDER DEVELOPMENT AT THE HCI LAB

One of our research goals at the HCI Lab is to provide ways of enhancing a Naval operator's

use of information systems. Modem sensor and signal processing systems allow tracking of the

direction of a user's gaze, and the position of a user's head. We have developed new interaction

techniques based on these additional channels of user input, and want to determine if they are easy

and effective to use.

It is one thing to devise a new interaction technique which seems to have advantages over

existing techniques; it is another to empirically verify the practical advantages (e.g., improved user

performance) of one technique over another. Our C2-like testbed will provide a context for

evaluating and comparing existing and new techniques. It is important to note that the purpose of

this testbed is not to produce a high-fidelity C2 simulator. Rather, the purpose is to produce a

command-and-control-oriented testbed as a foundation for developing and empirically evaluating

interaction techniques. This empirical focus is a unique aspect of our work; few other HCI

research groups perform empirical experiments to evaluate their work, especially for new

interaction techniques.

2.1. Interaction Techniques

2.1.1. Pre-Screen Projection

Our view of the world changes whenever we move our head. We are familiar with the way our
view changes as we move about, and control our view by positioning our head. By tracking a

person's head and making the viewpoint used to compute a projected scene correspond to the

person's physical viewpoint, head motion can be used to control the view of synthetic imagery.

Based on this idea, we are developing a new interaction technique called pre-screen projection

(Templeman 1993a, 1993b). It works by tracking a person's head and then altering the view

presented on the screen (see Figure 1). By making the virtual and physical viewpoints correspond,

images presented on the screen match those that would be seen if the object existed in space in

front of the user. This carries many of the natural dynamic properties of the visual world over to

computer-generated imagery, to make the view react in a way consistent with the user's

expectations, that is, in a natural way. A virtual object must be in front of the screen for its

projected screen image to expand as a user moves toward it.

.When the entire scene consists of a single flat picture in front of the screen, head movements

provide a natural, hands-free way to pan-and-zoom over it. A user pans an image on the screen by

simply moving their head from side to side and zooms in and out by simply moving toward or

away from the screen.
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FIGURE 1: PROJECTING AN OBJECT IN FRONT OF THE SCREEN.

Pre-screen projection provides continuous visual feedback that guides the user in selecting a

view. The user simply moves their head toward a point of interest to acquire the desired view.

This technique gives the user access to a virtual viewing surface much larger than the display

screen while leaving the hands free to perform other operations. Three dimensional features may
be added to strengthen the effect of a dynamic view, which appears in a frame of reference that

remains fixed in three-dimensional space.

This new technique for panning and zooming over a map is well suited for performing the

kinds of spatial resource management carried out in C2 applications. Once fully developed, this

technique should, for example, allow analysts to get more use out of situational displays presented

on desktop or large screen displays.

This new technique provides an interesting contrast to the eye-gaze driven interface previously

developed at NRL's HCI Lab (discussed in Section 2.1.2). Pre-screen projection provides a

continuous stream of output in response to a user's head movements. The strong dynamic
graphical feedback component contrasts sharply with the eye tracking interface, where only

minimal changes to the screen are made in response to eye movements, to avoid drawing the eye's

attention and thus setting up an undesirable feedback loop.

2.1.1.1. Implementation

The initial version of pre-screen projection uses an Ascension BirdTM device to track the head,

and a Silicon Graphics Iris 4D/210VGX workstation to generate the interactive view. A monocular

(non-stereo) view is presented. The scene, a simple arrangement of ships and planes drawn on top
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of a grid, is viewed from above, with the virtual surface of the ocean falling two feet in front of the

screen.

Pre-screen projection is straightforward to implement. All that is required is to map the

computational viewpoint and the user's physical viewpoint into the same coordinate system, and

define the viewing volume so that its edges line up with the window on the screen. The apex of

the viewing pyramid moves in concert with the physical viewpoint. The graphics system must

redraw the scene fast enough to produce smooth animation. To draw objects in front of the screen,

simply place them there in the model coordinate system, and make sure that the near clipping plane

falls in front of them. Deering (1992) describes in detail how to register the virtual scene precisely

in the user's view.

2.1.2. Eye Tracking

Eye movements provide a means by which users and computers can communicate information.

That is, the computer will identify the point on its display screen at which the user is looking and

use that information as a part of its dialogue with the user (Jacob 1990). (Note: Throughout this

paper, the word "dialogue" simply refers to the interaction between user and computer.) For

example, if a display showed several icons, a user might request additional information about one

of them. Instead of requiring the user to indicate which icon was desired by pointing at it with a

mouse or by entering its identifier with a keyboard, the computer can determine which icon the

user is looking at and immediately give information on it. The user's actions (i.e., looking at an

item) are the same as in the real world, but the physical effect is different in the computer world

than in the real world.

Eye trackers have existed for a number of years, but their use has largely been confined to data

collection for post hoc analysis. The equipment is now becoming sufficiently robust and inex-

pensive to consider its use in a real-time user-computer interface. What is now needed to make this

happen is appropriate interaction techniques that incorporate eye movements into user-computer

interfaces in a convenient and natural way.

A user interface based on eye movement inputs has the potential for faster and more immediate

interaction than current interfaces, because people move their eyes extremely rapidly and with little

conscious effort. A simple thought experiment suggests this speed advantage: Before operating

any mechanical pointing device (i.e., a mouse), a person usually looks at the destination to which

they wish to move the mouse. Thus the eye movement is available as an indication of the person's

goal before they could physically actuate any other input device.

However, people are not accustomed to operating devices in the world simply by moving their

eyes. Our experience is that, at first, it is empowering for a user to be able simply to look at what
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they want and have it happen, rather than having to look at it and then point and click it with the

mouse. Before long, though, it becomes like the "Midas Touch". Everywhere the user looks,

another command is activated; the user cannot look anywhere without issuing a command. The

challenge in building a useful eye movement interface is to avoid this Midas Touch problem.

Carefully designed new interaction techniques are thus necessary to ensure that they are not only

fast but that they use eye input in a natural and unobtrusive way. Our approach is to think of eye

position more as a piece of information available to a user-computer interaction involving a variety

of input devices than as a general purpose input device used in isolation.

A further problem arises because people do not normally move their eyes in the same slow and

deliberate way they operate conventional computer input devices. Eyes continually dart from point

to point, in rapid and sudden saccades. Even when a user thinks they are viewing a single object,

the eyes do not remain still for long. It would therefore be inappropriate simply to substitute an

eye tracker as a direct replacement for a mouse. Wherever possible, we therefore attempt to obtain

information from natural movements of the user's eye while they view the display, rather than

requiring the user to make specific trained eye movements to actuate the system. In our design, the

computer constantly responds to the user's gaze by determining the visual object nearest to where

the user is looking, and displaying additional information about that visual object. The added

information is presented in a status window at the side of the main window. This contrasts with

the way mice are typically used to explicitly select a target, by precisely positioning a cursor over

the visual item of interest, and clicking a mouse button to initiate an action (e.g., displaying

additional information about that visual item).

2.1.2.1. Implementation

Our solution to the problem of using eye movement data is to partition it into two stages (Jacob

1991). First the system processes raw data from the eye tracker in order to filter noise, recognize

fixations, compensate for local calibration errors, and determine, from available information,

where a user is looking on the screen. This processing stage uses a model of eye motions

(fixations separated by saccades) to drive a fixation recognition algorithm that converts the

continuous, somewhat noisy stream of raw eye position reports into discrete tokens that represent a

user's intentional fixations. Then these tokens are passed to a user interface management system

(UIMS), along with tokens generated by the low-level input from other devices being used

simultaneously, such as a keyboard or mouse.

Output of the recognition algorithm is converted to a stream of tokens, in order to make the eye

tracker data more tractable for use as input to an interactive user interface. The system reports

tokens for eye events considered meaningful to the user-computer interaction, analogous to the
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way that raw input from a keyboard (e.g., shift key was depressed, letter 'A' key was depressed,

etc.) is turned into meaningful events (e.g., one ASCII upper case 'A' was typed). Tokens are
reported for the start, continuation (every 50 milliseconds, in case the system is waiting to respond
to a fixation of a certain duration), and end of each detected fixation. Each such token is tagged

with the actual fixation duration, so an interaction technique that expects a fixation of a particular

length will not be skewed by delays in processing by the UIMS or by the delay inherent in the

fixation recognition algorithm. Between fixations, a non-fixation token is reported periodically by

the system, indicating where the eye is. However, our current interaction techniques ignore this
token in preference to the fixation tokens, which are more filtered. A token is also reported
whenever the eye tracker fails to determine eye position for 200 milliseconds and again when it

resumes tracking. In addition, tokens are generated whenever a new fixation enters or exits a

monitored region, just as is done for the mouse. Note that jitter during a single fixation will never

cause such an enter or exit token, since the nominal position of a fixation is determined at the start

of a fixation and never changes during the fixation. Jitter is ignored between fixations. These

tokens, having been processed by the algorithms just described, are suitable for use in user-

computer interaction in the same way as tokens generated by mouse or keyboard events.

2.2. An Application Testbed for Interaction Techniques

In developing our C2-like testbed, our first step was to study existing command and control

systems (Hix 1993). Our goal is to identify tasks performed in current C2 systems, so the testbed

for multi-modal interaction can focus on the most critical aspects of command and control. We

have visited a number of local facilities to meet with people developing and using modem C2

systems, and received a number of demonstrations.

2.2.1. Motivation for the C2 Testbed

As discussed earlier, the main purpose of the C2 testbed is to support creation and empirical

evaluation of interaction techniques, both singly (one technique used in isolation) and in

combination. Earlier research in the HCI Lab on new interaction techniques has used rather

"simple, often non-military domains and tasks (Jacob & Sibert 1992). This research has yielded

valuable information about alternative interaction techniques such as eye gaze and three-

dimensional trackers. Continued work in this area should have even greater value and long-term

consequences for Naval C2 systems if it is set in the context of a more realistic, command-and-

control-like testbed to be used for experimentation.

Many of the techniques being considered for inclusion in the testbed a..e unusual, non-routine

techniques (such as eye gaze, head mounted trackers, pen-based and other gestural input, voice,
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and so forth). Obviously, these techniques are, in some cases, drastically different in look, feel,

and behavior from the standard mouse-and-keyboard interfaces that users most commonly use. As

a result, people often mistakenly assume that the very uniqueness and novelty of such techniques

make them naturally "better" - or at least more fun - for users. This is, of course, not necessarily

the case. Thus, rather than assuming that exciting new technology improves user task performance

and satisfaction, we want to determine empirically whether it does or not, and in which cases and

for what tasks. So a goal of using the C2 testbed for experimentation is to evaluate user

performance. Testbed development is also extending existing work at the HCI Lab on

architectures for user interface software management.

2.2.2. Requirements for Testbed Development

There are several critical requirements for the testbed:

* The testhed needs to capture essential tasks performed in a meaningful application - namely,
C2.

Essential tasks are those that are most frequently performed by a user, those that are mission

critical, and so on.

* The testbed should be fairly easy and quick to develop.

We are studying new interaction techniques within a C2 framework, not trying to develop a

superior C2 simulator. We are not in the business of developing C2 systems, and unfortunately for

us, those who are in that business have not built them with user interfaces extensible enough to

accept novel interaction techniques.

* The testbed should be easy for a novice (someone not skilled or knowledgeable in C2 systems)

to learn to use.

The testbed needs to capture the essence of C2 without requiring a user to know a lot about modem

warfare.

* The testbed should be extensible.

New tasks, operations, modes, and of course devices, should be easy to add to evaluate new

techniques. Incremental design allows us to accommodate anticipated future expansion of the

testbed.

* We need control over internal connections between the testbed application and the interaction

techniques.

It is not always feasible to simply substitute a new device or technique for the mouse in an existing

application. Different interaction techniques are appropriate for different situations and different

types and levels of user tasks, and these techniques are not necessarily interchangeable. There is a
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very close coupling between displayed graphics and the input device(s) used to interact with and

manipulate those graphics, in a tight feedback loop. Visual changes on the screen provide

appropriate feedback to a user's actions. Specification of feedback for those actions defines an

interaction technique. At a more global yet subtle level, layout of graphics on the screen both

affords and constrains how a user operates on the graphics. Two-dimensional window-based

layouts typically use a mouse for user interaction, and are designed around the capabilities and

limitations of a mouse. In a very real sense, the nature of an input device influences the screen

display. Different input devices, like an eye tracker or a 3D tracker, will impose their own

demands on how the screen is used. This raises the question of how best to use the display when

the user has simultaneous control over multiple input devices. This is a key research issue we are

addressing. There are also difficult technical problems involved with adding a new device or

technique into a system that was not designed to be flexible enough to deal with it. This is

addressed in more detail in Section 3.2. under windowing systems and graphics tools.

2.2.3. Approach to Developing C2 Testbed

these requirements all argue against adopting an existing, sophisticated, complex C2 system as

the basis for our testbed for evaluation. These requirements are a key in driving development of

our C2 testbed. Specifically, we will use an incremental approach to producing the C2-like testbed,

incorporating scenarios that will allow users to perform different kinds of C2 tasks. The testbed

will focus on generic, commonly performed tasks. The testbed architecture will be such that it can

support the addition of new interaction techniques and devices to the testbed as "snap-ons", so that

new techniques can be incorporated as quickly and easily as possible. This generic, extensible

testbedframework will provide us with a suite of user tasks for a specific application area, namely

C2. It will include a variety of user tasks at all levels dealing with mission planning. For examr e,

a high-level task might be "assess battle damage", while a low-level task might be "assess battle

damage on a specific ship". The suite of common tasks is representative of what tasks C2 systems

support; the interaction techniques relate to how the tasks are performed.

Some of the interesting issues involved in developing the testbed include how to design the

human-computer interface incorporating new interaction techniques so that they can effectively be

compared to current techniques (e.g., mouse, keyboard). It is overly simplistic and optimistic to

assume that an eye gaze device for a selection task substitutes directly for a mouse for that same

task. Similarly, it would be possible to develop a testbed scenario using the eye gaze technique

that is inherently better than a mouse-driven version of the same scenario, and vice versa. In this

case, all comparative performance measures are obviously fallacious.
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The basis on which we will choose interaction techniques for particular tasks, another
interesting issue in testbed development, is not yet formalized. Obviously some interaction

techniques work better for some types of tasks than others. A simple example is the awkwardness

of entering alphanumeric characters one at a time by clicking on a keyboard display on the screen.
A mouse simply does not work well for entering discrete alphanumeric characters; the traditional

keyboard is much better. So in determining which techniques best fit which tasks, we will base

our hypotheses on any existing work on similar interaction techniques, naturalness, our own

expertise, and some pre-testing of interaction techniques on simple tasks.

Another issue is the criteria for choosing initial tasks for the testbed. The criteria are fairly
obvious; namely, the tasks most often performed and the tasks that are most critical to
accomplishing a mission. Tasks must also be designed and implemented in a reasonable time, so

they cannot be tremendously complex. They must also be learned by users in a reasonable time,

since we will not be able to obtain users as subjects in experiments for large amounts of time.

(This latter criterion, is, of course, counter to real C2 systems, which can have 26 weeks of
training.)

Some other technical issues in testbed development involve simulation in the testbed; it must
allow the user to dynamically adapt a plan if unforeseen events occur, and to dynamically develop

new plans to capitalize on occurring events. However, supporting this kind of environment is a

difficult technical challenge. Also, a database of Naval information (e.g., about ships, weapons,

personnel, and so on) must underlie the testbed.

2.2.4. Philosophy Behind Our C2 Testbed

The underlying philosophy for the first versions of the testbed, as mentioned previously, will
be to "keep it simple," for the following reasons:

* Real C2 systems are quite complex, and many diverse systems exist. There is little point in
expending energy in reinventing the wheel. It would be nice if our work inspired someone with an

existing C2 system (and the requisite expertise) to add our interaction techniques to their system.

• Both the eye tracking and head tracking interaction techniques appear best suited for

enhancing a user's ability to readily access information. We expect these techniques to minimize

unnecessary actions, and help a user maintain orientation within a geographic context. Situational

awareness is central to the performance of someone using a C2 system.

- There is a limit to how much a novice user will be able to learn about the system before that

user can perform a meaningful task, suitable for measuring performance. Most "users" that we

will have access to for evaluating the interaction techniques in our C2 testbed will not be aware of

the inherent capabilities of an F- 111 bomber, for example. To that end, the testbed will provide
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them with "pre-digested" descriptive information about each of their resources and any other
appropriate objects in a particular scene. Each weapon system, for example, might have a numeric
rating of its destructive capacity (for appropriate targets), and each target would have a
corresponding rating of its vulnerability to weapon hits.

We will use simplified, mock data instead of real military databases. These can be garnered
from openly published war games, like Harpoon, as well as from readily available sources such as
Jane's and Defense Mapping Agency data.

2.2.5. Ideas for the Initial Testhed

In the early stages of our testbed development, we are most interested in interaction techniques
for input and their effects on output (presentation). The planning task is largely non-numeric and
temporal, with graphical and visual needs. In addition to its output requirements, planning occurs
through a great deal of interaction of the user with the C2 system. Thus, planning is a logical high-
level task for us to develop, at least initially, in our C2 testbed.

For the reasons just explained, the scenarios and tasks we intend to develop will focus
primarily on mission planning tasks. Accordingly, the initial testbed will focus on the planning
process for an air-strike scenario, which can be broken down as follows:

Situation Assessment

-> Target Selection

-> Asset Allocation and Weapon Load-out

Use of a static C2 testbed will be very effective in our early work. For example, a map
showing geographic deployment of friendly and enemy resources can allow a user to study aircraft

available on each carrier and air-base, and candidate enemy targets. The user might then specify
weapons load-out of the aircraft, group aircraft into functional units, and assign these units to

enemy targets. The user can acquire the necessary information from databases accessible through

the testbed, and will not be expected to know such information a priori. This kind of initial
planning, which can be done without a simulation module in the testbed, is critical to the success

of a mission, and thus is an important realistic aspect of C2 systems use.

A certain amount of time-dependent user response can be attained, for example, by including

dynamic changes in testbed configurations, such as changing the status of friendly forces due to
equipment malfunctions, and enemy forces due to the arrival of new intelligence indicating their

current deployment. For example, a flashing icon might alert the user to a newly discovered scud

missile site. These kinds of changes will be issued asynchronously by the testbed, so that they

appear "real-time" to the user.
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This approach allows us to stress the interactions that allow a user to access a situation and
allocate appropriate resources. With this approach, we can defer the complicated job of
constructing a computer simulation of dynamic, interacting weapons systems composed of
sensors, launch platforms, and missiles, at least in the near future. Design of early versions of the
testbed will take into account the need for this sort of expansion, to full simulation capabilities, in

future versions of the testbed.

2.2.6. Design Issues

The first version of the testbed, in accordance with our "keep it simple" philosophy, will
incorporate a map of some militarily "interesting" geographic area of the world that also has
interesting shoreline/ocean features (e.g., Middle East, Libya, Korea). The scene will also contain
objects of Naval interest (e.g., ships, air bases, subs, sonar, radar) for which information can be

accessed by the user.

We have decided at this point to have pre-screen projection be the first new interaction
technique in the testbed. We want to be sure that we can get interesting results from our earliest
experiments using the testbed, and eye gaze technology may not be mature enough to do this.

Important generic tasks in C2 systems that will be used as the basis for early testbeds include:

"• Acquiring information

"* Using the acquired information

" Controlling the display (especially the kind and amount of information presented)

There are several fundamental questions that seem to be most important to explore first for
performing these tasks with pre-screen projection:

• What amount of perspective scaling control of the image is appropriate for each of the x,
y, and z axes along which changes occur as a user's head moves. This needs to be user-control-
lable, depending upon what task a user is performing. It also depends upon depth versus height
versus width (x, y, z) of the world view available to a user at any point in time. For example, as a
user wants "deeper" (more detailed) information, say, about an object on the screen, they may need
to work within a small range of the z axis, and within this small range may need greater
magnification than when working through the entire z axis range. We will have user-controlled
warping in the first testbed.

- How to freeze an image on the screen (it seems unlikely that a user will accept a
constantly changing image in response to continual head movements of a user). Initially we will
probably use a mouse click to do this; later, gestures or postures from a data glove or words from a
voice recognizer, for example, will be included.
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* How to unfreeze an image on the screen. This also includes what happens to the screen

image when a user issues an unfreeze command. In particular, the view of the screen immediately

after unfreezing it can be either absolute or relative to its initial position. We will have both relative

and absolute unfreezing in the first testbed.

* How to show increasingly more details of data about a single object. As the user moves

closer to the screen, more data about an object are displayed, and vice versa. Hill and Hollan

(1992) demonstrated the effectiveness of displaying successively more detailed levels of

information as a user zooms in on a scene, using hand controls. We will incorporate this facility

into our C2 version of pre-screen projection. We will explore how best to display simple linear

data, as well as hierarchical data (where the user can progressively request more detailed

information). We will have ways of displaying linear data in the first testbed, and possibly

hierarchical data as well.

* How to show information about multiple objects on the screen at once. In almost any

complex situation, such as C2 systems afford, a user will want to access information about more

than one object at a time. For example, in planning a targeting strategy, a user may need to see

which weapons are on each of several ships in order to develop an effective targeting plan. We are

not sure yet if this will be in the first testbed.

* What sort of context (if any) a user needs when using pre-screen projection. Because a

user can always easily back out to the "big picture", the need for a context may be reduced with

this interaction technique. We are not sure if this will be in the first testbed.

All these questions involve designing scenarios for appropriate tasks; this is one of our next

endeavors. The issues that we will directly address in the first version of the testbed will be (more

or less in the order listed, because this seems like the order in which we logically :ed to know

about each of these):

. Perspective scaling control by the user

- Disclosure of simple information about a single object

- Freezelunfr.ee (absolute and relative)

To follow shortly in later versions of the testhed will be:

- Disclosure of hierarchical information about a single object

- Disclosure of information about multiple objects

* Context information

We will develop specific scenarios and tasks that allow us to informally, formatively evaluate

these issues. We will then have some (at least loosely acquired) empirical information about

design with pre-screen projection. We already have many ideas for designing in order to address
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these issues. For example, we may explore the possibility of attaching a trackball to the arm of the

user's chair, as a convenient placement for this device.

We may also do some simple comparative studies of pre-screen projection versus traditional

techniques (probably mouse and/or trackball) using the early scenarios. As formative evaluation

progresses, we will be using our results to design a more interesting, more realistic multi-modal

testbed, with which more useful comparative empirical studies can be performed. Important data

to collect for pre-screen projection include user performance (e.g., time, errors), user fatigue, and

user subjective satisfaction. Use of the technique while standing versus sitting may also be

explored.

There are some commercially available tools, such as HyperCard and other similar packages,

that can be used for prototyping user interfaces. Unfortunately, there are not commercially

available tools that will support implementation of the kinds of novel interaction techniques we are

developing. There is simply no way of implementing pre-screen projection or eye-gaze selection

using these tools, so we are building our own support tools.

2.3. Extensible User Interfaces

A second important reason for placing the new interaction techniques within a quasi-realistic

application is that it allows us to examine the relationship between the interaction software and the

rest of the application software. There needs to be a way of adding and refining interaction

techniques to an application without having to constantly rewrite major sections of the code each

time. In many existing systems, code used to carry out interaction techniques is threaded

throughout the application, locking in the way things are handled. It is very difficult, for example,

to substitute one means of selecting an object for another. This is not a problem if two input

devices, say a mouse and a trackball, are used in virtually exactly the same way; then one device

easily substitutes for the other. But it is a problem when different devices operate in different ways

to carry out the same task. Our eye-tracking system allows the user to select an object on the

screen, but it is performed in quite a different way than it would be using a mouse.

As the variety and combinations of input devices and techniques grows, it becomes more and

more important to manage the complexity of programming their use. Ideally, one should be able to

plug in a new device, select the tasks it will allow users to perform, and specify how it will be used

(the interaction technique), and the application should extend to support it. A carefully designed

software architecture is required to approach this level of extensibility.
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2.3.1. The User Interface Management System

Interactive computer graphics systems can become large, complex, and difficult to program. In

the process of developing the new techniques and testbed, we are also extending the software

architecture used to implement the system. We are working in the software constructional domain,

specifying what the computer does, but at a higher level of abstraction than writing code. The

software to support interactive graphics is constructed within a general purpose framework called a

user interface management system, or UIMS.

A UIMS is a separate software component that conducts all interactions with the user; it is

separate from the application program that performs the underlying task. It is analogous to a

database management system in that it separates a function used by many applications and moves it

to a shared subsystem. It removes the problem of programming the user interface from each

individual application and permits some of the effort of implementing human-computer interaction

to be amortized over many applications and shared by them. It also encourages consistent "look

and feel" in user interfaces to different systems, since they share the user interface component.

Conversely, it permits human-computer dialogue independence (Hix & Hartson 1993), where

changes can be made to an interface design without affecting application code. A UIMS that

includes a method for precisely specifying user interfaces allows an interface designer to describe

and study a variety of possible user interfaces, such as performing predictive analytic evaluation of

an interface before building it.

The UIMS being extended and applied to implement the C2 testbed was originally developed at

the HCI lab (Jacob 1985, 1986). It partitions each interaction task into three levels: lexical,

syntactic, and semantic. The lexical level covers all physical actions performed by the user and all

the low-level processing used to convert that action into internal data that a computer can operate

on. It also includes output actions performed by the computer, like drawing a rectangle on the

screen. Discrete actions performed either by the user or the computer are typically referred to as

events, and a record describing an event is called a token. All input tokens are entered into a

cpmmon event list. At the syntactic level this information fits into the ongoing interaction between

user and computer. It determines what user inputs are accepted under the current state of the
system, and how the computer reacts to a user's input. It specifies the relationships among events.

This level often includes direct, low-level feedback, like highlighting a selected object on the

screen. Syntactic level behavior is perfonrcdi by executing lexical actions. Finally, there is the

semantic level of interaction - what does a successfully completed sequence of user input mean?

This usually translates into the effect user input has on an application. That input might request

information, manipulate objects in the application, or enter new data. This flexible three-tiered

decomposition of interaction was originally described by Foley and Wallace (1974) as a general

way of characterizing a user interface. We have found that it can be applied to a wide variety of
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interaction technliqLCs in a straightforward manner. This logical decomposition describes the
software architecture we use to implement interaction techniques and how we link them into an

application. It is shown in Figure 2.

Lexical Syntactic Semantic

Window system

Eye ouP~tpu
tracidng \acion/

Application
Input- Interface

3D tracking of outp
head &hand afo

(outputJ

FIGURE 2: DIVIDING THE USER INTERFACE INTO THREE LEVELS: THE
LEXICAL, SYNTACTIC, AND SEMANTIC LEVELS.
Details concerned with the software for reading and controlling a variety of hardware devices
are handled in the Lexical portion of the UIMS. All user input is mapped onto the same stream
of tokens. These translated tokens, indicating discrete events, are passed to the syntactic
section which uses state transition graphs to sequence interactions. Each input-output action is
handled by a separate co-routine. The executive within the syntactic portion takes care of
suspending and resuming these co-routines. Processed input is passed to the application, and
graphical output commands are received from it. The application is the semantic part of the
interactive system.

2.3.2. A Means of Specifying the Syntax of Interaction

Previous design efforts at the HC lab have led to development of a state transition diagram

based approach for specifying the syntactic component of interaction techniques (Jacob 1985,

1986). State transition diagrams show how the user's actions affect system state, depicting

possible sequences of operations a user can perform to carry out a given task. Their graphic form

makes them easy to work with and explain to other members of a design team.
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This approach has been extended to work with direct manipulation user interfaces. Specific
manipulations can be descrit- d using self-contained sub-diagrams that interact with each other in
limited ways. This is an advantage because it is clearer to separate the diagrams used to specify
distinct interactions. In that case, a state transition diagram breaks down neatly into a set of
concurrently active sub-diagrams, implemented as a collection of co-routines. This approach struc-
tures the design specification in a highly modular way, clearly delimiting the interaction between

different sub-components. The novel interaction techniques we have developed fit nicely within

this framework.

2.3.3. Implementation

We will give an example to illustrate how an interaction technique is specified and processed in

terms of state transition diagrams. As shown in Figure 2, tokens obtained as a result of lexical
processing feed into state diagrams that define the syntax of the interaction. At the lexical level,
event tokens are time-stamped, and multiplexed into a common stream before being passed on to
the syntactic portion of the UIMS (Jacob 1985, 1986). For example, eye tokens are translated into
the same stream with those generated by the mouse and keyboard.

The desired user interface is specified to the UIMS as a collection of relatively simple
individual interactions, represented by separate interaction objects, which comprise the user
interface description language. A typical object might be a screen button, scroll bar, text field, or

eye-selectable graphic icon. A ship icon that can be selected by looking at it will be used as an

example below. At the level of individual objects, each such object conducts only a single-thread
interaction, with all inputs serialized and with a remembered state whenever the individual dialogue
is interrupted by that of another interaction object. Thus, operation of each interaction object is
conveniently specified as a simple single-thread state transition diagram that accepts tokens as
input. Each object can accept any combination of eye, mouse, and keyboard tokens, as specified
in its own syntax diagram, and provides a standard method that the executive can call to offer it an
input token and traverse its diagram. Each interaction object is also capable of redrawing itself; it
either contains or has access to the necessary state information. An interaction object can have
different screen extents (bounding regions) for redrawing, accepting mouse tokens, and accepting

eye tokens.

The executive within the syntactic portion of the UIMS controls the flow of control between

high-level state transition diagrams. It operates by collecting all state diagrams of the interaction

objects and executing them as a collection of co-routines, assigning input tokens to them and arbi-

trating among them (e.g., activating and suspending with retained state), as they proceed.

Whenever the currently-active state transition diagram receives a token it cannot accept, the
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executive causes it to relinquish control by co-routine call to whatever diagram can, given its

current state, accept it. If none can, the executive discards the token and proceeds.

"* Gazer EYE-GAZE-KILL
SendParent (EYE-GAZE-END)

EYE-FIX-CONT
Sen-L)rent(EYE-GAZE-CONT)

EYE-FIX-START EYE-FIX-END
Cond: IsMineC(loc) Send:arent(EYE-GAZE-CONT)
SendParentS(EYEY-GAZE-START)SendAllI(EYE-GAZE -KILL )

EYE-FIX-START
Cond: IsMine (loc)
Sendfarent (EE-GAZE -CONT)

"• Ship
ACCE,- BUT'TON-U
PickAction(

••IPYE-GnE- •TART

EY-GAZE-CONT
Cond: t Z selectTime
PickAction ()

FIGURE 3: STATE TRANSITION DIAGRAMS FOR AN EYE-SELECTABLE OBJECT.
Nodes in diagrams represent states in human-computer interaction, waiting for events.
Directed arcs represent events triggered by user actions. Upper-case words label events.

Expressions which include parentheses indicate function calls. Cond: specifies a condition that
must hold before its associated event triggers a state change.

For example in Figure 3, each Ship is a separate interaction object (but all are of the same class,

Ship). An additional lower-level interaction object, Gazer, is provided to translate fixations into
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gazes. That is, every interaction object such as Ship also has a Gazer interaction object associated

with it. The Gazer accepts fixations on its parent object and then combines such consecutive

fixations into a single gaze token, which it sends to its parent object (in this case, the Ship). Figure
3 shows the state transition diagram for Gazer; it accepts tokens generated by the fixation

recognition algorithm (EYE-FIX-START, EYE-FIX-CONT, and EYE-FIX-END), tests whether they lie

within its extent or else meet the criteria for off-target fixations described above (implemented in

the call to IsMine), accumulates them into gazes, and sends gaze tokens (EYE-GAZE-START, EYE-

GAZE-CONT, and EYE-GAZE-END) directly to the parent object. The Ship interaction object then

need only accept and respond to gaze tokens sent by its associated Gazer object. Figure 3 also

shows the portion of the Ship interaction object state transition diagram concerned with selecting a

ship by looking at it for a given dwell time (for clarity the syntax for dragging and other operations

is not shown in the figure; also not shown are tokens the selected ship sends to other ships to

deselect any previously-selected ship). When a user operation on a ship causes a semantic level

consequence (e.g., moving a ship changes its track data), the Ship interaction object calls its

parent, an application domain object, to perform the work. This syntax is well matched to natural

saccades and fixations of the eye. Notice that although the Gazer interaction object describes how

the system registers one form of user input, and the Ship interaction object describes the output

response of a displayed item, they can both be clearly represented using the same notation.

3. THE SOFrWARE DEVELOPMENT ENVIRONMENT

New interactive devices and techniques are being invented and commercialized as advanced

technology is applied to open up communications channels between humans and computers. We

do not want to expend a great deal of effort to develop a software implementation that can only be

used with one or two specialized devices. Thus, we are developing a general purpose software

architecture that extends easily to support additional new devices and techniques.

Tools and approaches we are using to implement and build our C2 testbed and underlying

software architecture are an important part of our work. Substantial effort must go into an

interactive system's design to structure its software into modular functional components. The

functionality described here shows how information is handled, elevating user actions from raw

input signals to application-significant operations, while providing feedback at one or more levels.

Each new technique is decomposed in such a way that code modules required to implement it plug

smoothly into the existing testbed system. The portion of the system designed to handle this is the

UIMS, described previously in Section 2.3.
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3.1. Object-Oriented Design

The C2 testbed, details of the interaction techniques, and the UIMS are designed using an
object-oriented approach. An object-oriented language is well suited for coding interactive
graphics systems which can be very difficult to program if their complexity is not managed. (The
class hierarchy for the UIMS-based software architecture is given in the Appendix.) Interaction
objects described in the preceding section are abstract entities, and should not be confused with

objects of the programming language used to implement them.

Interactive computer graphics is a time critical application area. A number of advanced,
machine-portable object-oriented programming languages are available, but most of them are not
designed to be extremely run-time efficient. Execution speed has often been traded to achieve a

pure and flexible object-oriented language like Smanltalk, Eiffel, or CLOS (Common Lisp Object

System). C++ was designed from the start to retain as much of the speed advantages of C as
possible in an object-oriented system.

Thus we are using the C++ programming language to implement the interaction techniques, the
testbed, and the UIMS. Standard libraries that support graphical user interaction were built to be
accessed from C, and are therefore available through C++. Excellent code management tools and
debugging tools are available on both hardware platforms (Sun and Silicon Graphics, discussed in
later sections) we are using.

3.2. Windowing Systems and Graphics Tools

Strengths and weaknesses of existing software tools and development techniques, including
commercially available ones such as the X Windows system and Motif, discussed below, become
evident only when they are applied to the wide variety of situations encountered as we explore new
ways of performing graphical interaction. Our group attempts to leverage existing tools to

implement new interaction techniques, but sometimes existing systems are too limited. We have
found that much of the functionality provided by the X Window system and nearly all of what
Motif provides is not useful for building new interaction techniques that use input devices other
than a mouse or keyboard, because these systems were not designed to handle different devices.
Furthermore, they are not modular or extensible enough for our purposes. The problems we
uncover with these systems are useful discoveries in and of themselves, especially when we can

produce better methods.

3.2.1. Strengths and Limitations of the X Window System

The strength of X Windows is that it places an efficient low-level windowing support system

within the context of a networked environment. It provides necessary tools for developing
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interactive graphics based on mouse and keyboard input devices, and 2D graphical output. Most
importantly of all, the X Window system has become a standard means for Unix-based
workstations to provide support for interactive graphics.

Windowing systems that rely on mouse input have evolved to the point where a general
support package can be provided. They work well with devices other than a mouse, say a trackball

or tablet that can perform exactly the same function as a mouse; i.e., they can be used to position
the cursor precisely within a 2D plane.

Unfortunately, X is a rather awkward tool for working with novel input devices that do
something other than emulate a mouse or keyboard in terms of X level protocols. X only supports
these two classes of devices, and only allows them to be used in specific ways. However, with
the X Window system we find that a simple subset is useful to us, but that as the elements within a
system start to interact, we must take over and manage these facilities ourselves, building a more
flexible system as we go. We use basic features of X, but shift the more complex aspects of
dynamic screen control to our own software support system. We use Xlib (X Window's low-level
function library) for drawing graphics, handling server events, and dealing with mouse input
events. We have built our own system on top of Xlib for dealing with novel devices, event
queues, screen management, and graphical objects.

Novel devices like the eye tracker and the 3D head tracker interface to graphics workstations
over an RS-232 serial interface. This provides direct access to the input device, without having to
deal with X protocols which are not set up to handle such devices. The low-level (lexical)
software that reads and controls these devices is part of our UIMS (see Section 2.3.1). It would

be possible but considerably more difficult to incorporate them inside X itself, because X has a

layer structure tailored to work with a limited set of interactive devices. X has its own restrictive
way of doing things that extends beyond the way it handles lexical input. Its screen management
and tokenized event list is not always suited for our new techniques, so in both cases we only use
the most elementary parts and use our own system to manage higher-level relationships.

3.2.2. Why Motif Is Not Used to Construct the Interactive Testbed
The over-specialization of current windowing packages built to facilitate mouse-based

interactions extends to higher-level packages that give an implementer a set of widgets and a

collection of design rules with which to implement interfaces with a consistent "look and feel". (A

widget is a graphical device presented on the screen that a user can operate, such as a menu or

scroll-bar. It is a highly stylized interaction technique.) Guidelines for designing WIMP

(windows, icons, menus, pointers) systems ignore the possibility of using input devices other than

a mouse look-alike and a keyboard.

21



Each device has its own capabilities and limitations. The visual appearance and action of a

workable object on the screen is an important part of an interaction technique. It provides the

visual feedback necessary for a user to control a device, and to confirm that the desired operation

was successfully completed. Just because an eye tracker and a mouse can both be used to select an

object on the screen does not mean that an eye tracker can be substituted for a mouse in an existing

application. For example, eye-based selection is faster than using a mouse, but it can only handle

targets larger than one degree of visual arc and can be used to select items that are more than two

degrees of visual arc apart (Jacob 1991). Thus, many of interaction techniques provided by Motif

(via Motif widgets) simply will not work for eye-gaze-based interaction.

3.2.3. GL & X Windows

We use a Silicon Graphics, high-performance workstation to perform the continuous viewing

transformations needed by our graphics-intensive interaction techniques, such as the pre-screen

projection technique (Section 2.1.1). Silicon Graphics provides a very well designed, efficient,

and easy to use graphics library for drawing two and three dimensional pictures on interactive color

workstations. In its current form, SGL (Silicon Graphics Library) includes basic window and

input management functions that cover much of the same ground as Xlib. Until now, SGL has

been a proprietary development tool, only available on Silicon Graphics hardware.

The X Window system, on the other hand, has become a defacto standard for portable win-

dow-based software development, and is available on a wide variety of computer systems,

workstations, and terminals. It has limitations in that it supports only 2D graphics primitives, and

its range of input devices is limited, as explained in Section 3.2.1. The basic X operations, like

specifying, opening, and redrawing a window, are generally useful commands. The fact that they

can work over a distributed network contributes to their market penetration.

There is a current movement in the computer graphics industry to provide a portable, SGL-like

graphics support library that operates within the framework of X. Within their own product line,

Silicon Graphics is moving SGL away from a full feature interactive graphics support bystem and

repackaging it as a set of output-only rendering routines. Windowing and input management

routines are being stripped away from SGL, leaving only rendering components that draw images

within windows defined by X. At the same time, a new graphics library called Open-GL is being

developed as an industry standard software package. Open-GL is fashioned after SGL, and like

the forthcoming version of SGL, it is designed to work within an `, Window system "wrapper".

This fits nicely with the portable software architecture we are developing. SGL will provide

3D graphics rendering. In the future it will be displayed within an X window and SGL will be

supplanted by Open-GL. Only a minimal subset of X will be used. The majority of input device
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control, event queue management, overall screen layout, and interaction techniques will be handled

by our own UIMS system.

3.3. Multi-Platform Development

The UIMS and application testbed are both being developed to run across several platforms.

Although this increases the effort involved in initial implementation, it ensures that the resulting

software is not tied to a single computer hardware platform.

3.3.1. Sun for Eye Tracking

Our eye tracking system consists of a corneal reflection eye tracking unit connected to a Sun

computer workstation. The eye tracking hardware is an Applied Science Laboratories Model

4250R system, consisting of an optical system that illuminates the eye with infrared light and

senses the eye with a video camera. The eye tracker is controlled by an Intel 486-based computer

which performs feature recognition on the video image to determine where the eye is looking. This

subsystem transmits the x and y coordinates designating the line of gaze over a serial port once

every sixtieth of a second to the Sun computer.

The Sun performs all further processing, filtering, fixation recognition, and some additional

calibration. Software on the Sun written in C++ parses the raw eye tracker data streams into

tokens that represent meaningful input evers. The UIMS deals with queuing these events, feeding

them to the state-transition-based parser to implement the pre-defined syntax of eye-driven

interaction techniques.

Currently all graphics drawing on the Sun is performed using X. (Open-GL is not yet

available for the Sun.) Text and 2D graphics are used to present a static display of ships. When

the user looks at a particular ship, its image highlights, and text appears to the side of the screen,

presenting additional information about the ship. Both pop-up and constantly displayed menus are

implemented to provide access to additional information about each ship. The UIMS couples the

user's actions to the display and allows direct manipulation of application-specific information.

3.3.2. Silicon Graphics for Pre-Screen Projection

The high-performance 3D graphics pipeline on the Silicon Graphics workstation is required to

support the continually changing view presented with pre-screen projection. The initial version of

this technique was quickly coded using SGL to test out the basic premise that it is natural to control

imagery that moves in response to a user's head motions as if it were located in front of the screen

(see Section 2.1.1).
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We have connected two different 3D tracking devices to our Silicon Graphics workstation: an

Ascension BirdTm, and a Polhemus 3-Space tracking device. Both track and report the location (x,

y, z) and orientation (yaw, pitch, roll) of their sensor. The pre-screen projection techniqt..; only

makes use of position information and ignores the orientation of a user's head. A continuous

stream of coordinates is reported to the host computer. The Silicon Graphics constantly redraws

the view of the map on the screen to keep it aligned with the user's head position.

3.3.2.1. Dynamic 3D Rendering in Pre-Screen Projection

Our C2-like testbed consists of a variety of ships and planes displayed on a geographical map.

The way a map is processed for display illustrates the challenges associated with using new

interaction techniques within the context of a complex application. The changing views presented
in response to the user's head motion must be presented in quick succession to produce a smooth
visual transf'ormation. The more frames per second are drawn, the smoother the animation

becomes. Thus the map should be redrawn as quickly as possible. Commercially available maps

portray geographic and political boundaries with a high degree of accuracy. A large number of
edge coordinates must be processed by the graphics hardware to draw such a map on the screen.
Of course, it takes longer to draw shapes with a large number of edges than those with a few. The
longer it takes to draw an individual picture frame, the fewer frames are drawn per second, and the
more jerky the continuously changing view becomes.

We want to evaluate pre-screen projection under the best available conditions. By manually

digitizing a map, we can keep the number of edge coordinates to a minimum and concentrate on

details of the map in areas of interest for the C2 scenarios. A map of North Africa and the

Mediterranean has been digitized manually to allow pre-screen projection to perform as smoothly

as possible. It is essential to optimize performance of a new interaction technique so that irrelevant

hardware and software limitations can be factored out of evaluation of the technique within the

context of the testbed (i.e., frame generation rate should not be a factor in evaluation).

This illustrates the point that whenever a new technique is developed, a new set of issues arise

that effect the way other parts of the testbed operate. This leads to a trade-off between maintaining

control over details of how an interaction technique works, and making do with more readily

available methods for implementing the technique. In the case of the map, a high precision

geographic contour map could be used, as is typically used when a map is zoomed in and out by

large steps. But redrawing so much detail would slow the frame rate at which pre-screen

projection imagery is presented. The alternative is to change the overall level of detail in the map to

make pre-screen projection work as smoothly as possible on our hardware. These sorts of issues

occur repeatedly as we fill in the practical details of each new technique. Extra work is often
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required to tailor the way other parts of a user interface work with new techniques. Just as,
historically, a great deal of effort has already gone into creating and tuning mouse-based
windowing systems, each new technique must be carefully tuned to fit its appropriate context.

Only then can it be fairly evaluated and compared against existing techniques.

A goal of our current effort is to display a sufficiently interesting scene of a Naval situation to
allow us refine details of pre-screen projection and evaluate it based on actual use. The display will
include ships, planes, airfields, and military targets displayed on a map. Each object will be
labeled, and techniques will be provided, for reference, to present status information about each
object or group of objects. This kind of information is essential for performing mission planning
tasks in the C2 testbed.

3.3.3. Compatibility Issues

The current version of the UIMS runs on a Sun and uses the X Window system for its low-
level graphical input and output. Before the code for pre-screen projection can be integrated into
the UIMS, it must be compatible with X. Therefore, once a basic version of the testbed is
working, the next step will be to convert the software running on the Silicon Graphics to make it

compatible with X. That will require converting the windowing and in-)ut event management from

SGL to X Windows. This coding task must be done all at once, since there is no way to mix
events reported by SGL with windows managed by X. How the two systems initialize the screen

and handle color are also incompatible.

This step paves the way for transporting the UIMS, which currently only runs on the Sun, to

the Silicon Graphics. The code should easily port to the Silicon Graphics machine, since it was
developed under Unix and written primarily in C++. The only software that is specific to the Sun

is the code used to drive the eye tracker.

There are differences between the versions of Unix running on the two computers, in particular
the "Make" code management facility on the Silicon Graphics is not as sophisticated as that of the

Sun's. These differences should be easily surmounted as the UIMS is transported to the Silicon
Graphics. It is interesting to note that one of the most difficult aspects of developing software on
two different machines is that each machine provides its own set of development tools (e.g.,
editors, debuggers, code version management, etc.). Thus a developer skilled in using one
development environment may not be as proficient when using the other.
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4. SUMMARY

At the Naval Research Laboratory's Human-Computer Interaction Laboratory, we are
developing novel interaction techniques to facilitate graphical interaction with command and
control, and other interactive, systems. In one technique, eye gazes are tracked and used to select
items to present more information about them. The other technique, pre-screen projection, a newly

invented technique for panning and zooming over a scene, appears well suited for facilitating the

kinds of spatial resource management carried out in command and control applications. Once fully

developed, this should facilitate analysts' use of situational displays presented on desktop or large

screen displays.

We have begun developing a command and control application testbed which will provide a

task-oriented context in which to empirically evaluate the new interaction techniques. The testbed

will be built to include the interaction techniques described in this report, alone and in combination

with other techniques. Requirements for the application testbed have been carefully studied, to

limit it to a manageable development task, and implementation of the testbed is in the early stages.

As discussed, our UIMS is capable of easily dealing with new devices and interaction

techniques as we add them to the testbed. Further efforts will explore how well the UIMS helps us

hook a variety of interaction techniques into the application testbed. If this software architecture

continues to prove as useful and flexible as it has been until now, it will serve as a model for

constructing future applications and allow them to use a wider range of input devices. This

approach should apply not just to Naval interactive systems, but to scientific visualization and

virtual reality based systems as well.
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